Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems

نویسنده

  • Peiliang Xu
چکیده

S U M M A R Y The method of generalized cross-validation (GCV) has been widely used to determine the regularization parameter, because the criterion minimizes the average predicted residuals of measured data and depends solely on data. The data-driven advantage is valid only if the variance–covariance matrix of the data can be represented as the product of a given positive definite matrix and a scalar unknown noise variance. In practice, important geophysical inverse ill-posed problems have often been solved by combining different types of data. The stochastic model of measurements in this case contains a number of different unknown variance components. Although the weighting factors, or equivalently the variance components, have been shown to significantly affect joint inversion results of geophysical ill-posed problems, they have been either assumed to be known or empirically chosen. No solid statistical foundation is available yet to correctly determine the weighting factors of different types of data in joint geophysical inversion. We extend the GCV method to accommodate both the regularization parameter and the variance components. The extended version of GCV essentially consists of two steps, one to estimate the variance components by fixing the regularization parameter and the other to determine the regularization parameter by using the GCV method and by fixing the variance components. We simulate two examples: a purely mathematical integral equation of the first kind modified from the first example of Phillips (1962) and a typical geophysical example of downward continuation to recover the gravity anomalies on the surface of the Earth from satellite measurements. Based on the two simulated examples, we extensively compare the iterative GCV method with existing methods, which have shown that the method works well to correctly recover the unknown variance components and determine the regularization parameter. In other words, our method lets data speak for themselves, decide the correct weighting factors of different types of geophysical data, and determine the regularization parameter. In addition, we derive an unbiased estimator of the noise variance by correcting the biases of the regularized residuals. A simplified formula to save the time of computation is also given. The two new estimators of the noise variance are compared with six existing methods through numerical simulations. The simulation results have shown that the two new estimators perform as well as Wahba’s estimator for highly ill-posed problems and outperform any existing methods for moderately ill-posed problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems 5 December 2016

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub-Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to find a subspace approximation to the full problem. Determination of the regularization parameter for the projected problem by unbiased predictive risk estimation, generalized...

متن کامل

Automated Parameter Selection Tool for Solution to Ill-Posed Problems Mid-Year Report

In many ill-posed problems it can be assumed that the error in the data is dominated by noise which is independent identically normally distributed. Given this assumption the residual should also be normally distributed with similar mean and variance. This idea has been used to develop three statistical diagnostic tests to constrain the region of plausible solutions. This project aims to develo...

متن کامل

Hybrid and Iteratively Reweighted Regularization by Unbiased Predictive Risk and Weighted GCV for Projected Systems

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub-Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to find a subspace approximation to the full problem. Determination of the regularization parameter for the projected problem by unbiased predictive risk estimation, generalized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009